LETTERS 2006 Vol. 8, No. 18 ⁴¹⁰⁹-**⁴¹¹²**

ORGANIC

Formation and Reactivity of Silacyclopropenes Derived from Siloxyalkynes: Stereoselective Formation of 1,2,4-Triols

Timothy B. Clark and K. A. Woerpel*

*Department of Chemistry, Uni*V*ersity of California, Ir*V*ine, California 92697-2025 kwoerpel@uci.edu*

Received July 5, 2006

ABSTRACT

Silver phosphate-catalyzed silylene transfer to siloxyalkynes provided silacyclopropenes possessing a silyl enol ether functional group. Coppercatalyzed insertions of carbonyl compounds afforded the corresponding oxasilacyclopentenes. The embedded silyl enol ether functionality was treated with various aldehydes and a catalytic amount of Sc(OTf)₃ to provide dioxasilacycloheptanones, which resulted from an aldol **addition/rearrangement. Stereoselective reduction or allylation of the cyclic ketone, followed by ⁿ-Bu4NF deprotection, provided high yields of 1,2,4-triols possessing four contiguous stereocenters.**

Oxasilacyclopentenes have proven to be versatile intermediates for the synthesis of a variety of valuable products, including highly substituted allylic alcohols, *â*-hydroxy ketones, 1,3-diols, and other polyoxygenated substrates. $1-4$ The synthesis of oxasilacyclopentenes can be achieved with complementary regiochemistry either by intramolecular hydrosilylation of propargylic alcohols¹ (1, Scheme 1) or by

the insertion of carbonyl compounds into silacyclopropenes (**3**).3,5,6 We describe herein the construction of oxasilacyclopentene silyl enol ethers $(2, R^2 = OSiR_3)$ from the ring 10.1021/ol061652g CCC: \$33.50 \circ 2006 American Chemical Society

expansion of 1-silyloxy silacyclopropenes. Subsequent treatment of the silyl enol ether with various aldehydes provided stereoselective formation of dioxasilacycloheptanones, precursors to $1,2,4$ -triols, through a Sc(OTf)₃-catalyzed Mukaiyama aldol reaction/1,3-Brook rearrangement sequence.

^{(1) (}a) Trost, B. M.; Ball, Z. T.; Laemmerhold, K. M. *J. Am. Chem. Soc.* **²⁰⁰⁵**, *¹²⁷*, 10028-10038. (b) Trost, B. M.; Ball, Z. T.; Jo¨ge, T. *Angew. Chem., Int. Ed.* **²⁰⁰³**, *⁴²*, 3415-3418.

⁽²⁾ Taguchi, H.; Ghoroku, K.; Tadaki, M.; Tsubouchi, A.; Takeda, T. *J. Org. Chem.* **²⁰⁰²**, *⁶⁷*, 8450-8456.

⁽³⁾ Clark, T. B.; Woerpel, K. A. *J. Am. Chem. Soc.* **²⁰⁰⁴**, *¹²⁶*, 9522- 9523.

⁽⁴⁾ For additional methods of oxasilacyclopentene formation, see: (a) Maifeld, S. V.; Lee, D. *Org. Lett.* **²⁰⁰⁵**, *⁷*, 4995-4998. (b) Miller, R. L.; Maifeld, S. V.; Lee, D. *Org. Lett.* **²⁰⁰⁴**, *⁶*, 2773-2776. (c) Clive, D. L. J.; Yang, W.; MacDonald, A. C.; Wang, Z.; Cantin, M. *J. Org. Chem.* **2001**, *⁶⁶*, 1966-1983. (d) Gettwert, V.; Krebs, F.; Maas, G. *Eur. J. Org. Chem.* **¹⁹⁹⁹**, 1213-1221.

^{(5) (}a) Seyferth, D.; Vick, S. C.; Shannon, M. L. *Organometallics* **1984**, *³*, 1897-1905. (b) Seyferth, D.; Vick, S. C.; Shannon, M. L.; Lim, T. F. O.; Duncan, D. P. *J. Organomet. Chem.* **¹⁹⁷⁷**, *¹³⁵*, C37-C44. (c) Seyferth, D.; Duncan, D. P.; Vick, S. C. *J. Organomet. Chem.* **¹⁹⁷⁷**, *¹²⁵*, C5-C10.

⁽⁶⁾ Weakly basic heteroatom substituents were intolerant of the carbonyl insertion conditions due to copper-catalyzed elimination: Clark, T. B.; Woerpel, K. A. *Organometallics* **²⁰⁰⁵**, *²⁴*, 6212-6219.

Oxasilacyclopentenes **7a**,**b** were constructed from alkynes **4a,b** by a two-step, one-flask procedure.^{3,7} Silver phosphatecatalyzed silacyclopropenation of triisopropylsilyl- and *tert*butyldimethylsilyl-protected ynols **4a**,**b** proceeded at 70 °C to provide high yields of silacyclopropenes **6a**,**b** with the desired silyl enol ether functionality (Scheme 2).^{8,9} Although

it was not clear that such highly functionalized silacyclopropenes would be stable, **6a**,**b** could be prepared and handled with little difficulty using silver-catalyzed di-*tert*butylsilylene transfer conditions. Copper iodide-catalyzed insertion of butyraldehyde into silacyclopropenes **6a**,**b** provided oxasilacyclopentenes **7a**,**b**, with high regioselectivity (\geq 99:1). The selective functionalization of the C-Si bond in the presence of the silyl enol ether moiety demonstrates the high reactivity of the strained ring silane.¹⁰

Although the silyl enol ether of silacyclopropene **6a** was less reactive than the C-Si bond, the enol ether moiety of oxasilacyclopentene **7a** participated in Lewis acid-catalyzed Mukaiyama aldol reactions¹¹ that incorporate a second aldehyde into the resulting product. Treatment of **7a** with benzaldehyde and a catalytic amount of BF_3 ^{OEt₂ provided} aldol adduct **8** stereoselectively (Scheme 3).12,13 Formation

of **8** may occur by addition of the enolate, resulting from desilylation of **7a**, ¹⁴ to benzaldehyde followed by a 1,3-Brook rearrangement.¹⁵ In addition to the aldol addition/rearrangement product $\mathbf{8}$, α -silyloxy ketone $\mathbf{9}$ was observed (Scheme 3). Treatment of isolated aldol adduct 8 with BF_3 ^{\cdot}OEt₂ resulted in the formation of **9**, suggesting that a fluoridemediated retro-aldol reaction had occurred.

Optimized conditions for the Lewis acid-catalyzed construction of aldol addition/rearrangement product **8** were established using oxasilacyclopentene **7a**. A Lewis acid that could catalyze the aldol reaction without decomposition of **8** was desired. Upon screening Lewis acids,¹⁶ Sc(OTf)₃ provided aldol product **8** without formation of ketone **9**. The optimal reaction conditions utilized 20-25 mol % of $Sc(OTf)₃$, 1-3 mol % of camphorsulfonic acid (CSA), and 2/1 toluene/methylene chloride as solvent (eq 1). The reaction

selectivity and yield were sensitive to acid, but a catalytic amount of acid was required to initiate the process.¹⁴ Both butyraldehyde and isobutyraldehyde participated in the aldol reaction with **7a** to provide dioxasilacycloheptanones **10** and **11** in high yield and selectivity (eq 1). Oxasilacyclopentene **7b** also provided aldol product **8**, but the observed yield and selectivity were diminished.

The scope of oxasilacyclopentenes that could be constructed and utilized in this transformation was extended by nucleophilic addition to oxasilacyclopentene acetals. Acetal **7c** was synthesized by the CuI-catalyzed insertion of ethyl formate into the C-Si bond of the in situ generated

(11) For a review of the Mukaiyama aldol reaction, see: Carreira, E. M. In *Comprehensi*V*e Asymmetric Catalysis I*-*III*; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer-Verlag: Berlin, 1999; pp 997-1065 and references therein.

(12) Proof of stereochemistry of the products is provided as Supporting Information.

(13) For a review on the diastereoselectivity of Mukaiyama aldol reactions, see: Mahrwald, R. *Chem. Re*V*.* **¹⁹⁹⁹**, *⁹⁹*, 1095-1120.

(14) (a) Lin, S.; Bondar, G. V.; Levy, C. J.; Collins, S. *J. Org. Chem.* **¹⁹⁹⁸**, *⁶³*, 1885-1892. (b) Hollis, T. K.; Bosnich, B. *J. Am. Chem. Soc.* **¹⁹⁹⁵**, *¹¹⁷*, 4570-4581. (c) Carreira, E. M.; Singer, R. A. *Tetrahedron Lett.*

, *³⁵*, 4323-4326. (15) For examples of 1,3-Brook rearrangements, see: (a) Naganuma, K.; Kawashima, T.; Okazaki, R. *Chem. Lett.* **¹⁹⁹⁹**, *²⁸*, 1139-1140. (b) Shinokubo, H.; Miura, K.; Oshima, K.; Utimoto, K. *Tetrahedron* **1996**, *52*, -514. (c) Yamamoto, K.; Kimura, T.; Tomo, Y. *Tetrahedron Lett.* **¹⁹⁸⁵**, , 4505-4508. (d) Wilson, S. R.; Georgiadis, G. M. *J. Org. Chem.* **¹⁹⁸³**, , 4143-4144. (e) Hudrlik, P. F.; Hudrlik, A. M.; Kulkarni, A. K. *J. Am.*

Chem. Soc. **¹⁹⁸²**, *¹⁰⁴*, 6809-6811. (16) With nonfluoride-containing Lewis acids, a dual activation of the carbonyl and silicon groups is postulated. A subset of the Lewis acids that were examined for this transformation are as follows: $SnX₄, SnX₂, TiX₄$, ZnX₂, R₃SiOTf, and Ln(OTf)₃ (where $X = Br$, Cl, F, OTf).

⁽⁷⁾ CÄ irakovic´, J.; Driver, T. G.; Woerpel, K. A. *J. Org. Chem.* **²⁰⁰⁴**, *⁶⁹*, ⁴⁰⁰⁷-4012.

⁽⁸⁾ Silacyclopropene **6a** was isolated, purified, and characterized under inert conditions (88% yield). The yield of silacyclopropene **6b** (90%) was determined by 1H NMR spectroscopic analysis of the product relative to an internal standard (PhSiMe₃).

⁽⁹⁾ For recent applications of siloxyalkynes in organic synthesis, see: (a) Sun, J.; Kozmin, S. A. *J. Am. Chem. Soc.* **²⁰⁰⁵**, *¹²⁷*, 13512-13513. (c) Zhang, L.; Kozmin, S. A. *J. Am. Chem. Soc.* **2004**, *126*, 10204-10205.

⁽c) Zhang, L.; Kozmin, S. A. *J. Am. Chem. Soc.* **²⁰⁰⁴**, *¹²⁶*, 10204-10205. (d) Sweis, R. F.; Schramm, M. P.; Kozmin, S. A. *J. Am. Chem. Soc.* **2004**, *¹²⁶*, 7442-7443.

⁽¹⁰⁾ The observed regioisomer lends further support to the proposed mechanism of carbonyl insertion (transmetalation of the C-Si bond by CuI) and discounts an alternative Lewis acid-catalyzed mechanism. See: Franz, A. K.; Woerpel, K. A. *Acc. Chem. Res.* **²⁰⁰⁰**, *³³*, 813-820.

silacyclopropene **6a** in 83% yield and >99:1 regioselectivity. Lewis acid-mediated nucleophilic substitution reactions of acetal **7c** provided oxasilacyclopentenes **7d** and **7e** (Scheme 4).17 Addition of allyltrimethylsilane proceeded in high yield

with SnBr₄ and 2,6-lutidine. Nucleophilic addition of silyl enol ether 12 was catalyzed by Sc(OTf)₃ to provide 7e as a single diastereomer. Oxasilacyclopentene **7d** also participated in the aldol addition/rearrangement reaction to provide the desired adduct **13** in high yield and selectivity (eq 2).

The cyclic ketone **8** provided access to 1,2,4-triols with four contiguous stereocenters in high selectivity. Reduction of aldol product 8 with LiAlH₄ at -98 °C provided alcohol **14** in \geq 99:1 diastereoselectivity (Scheme 5). Addition of

allylmagnesium chloride to 8 at -98 °C afforded tertiary alcohol **15** in 92:8 diastereoselectivity. Deprotection of **14** and **15** with n -Bu₄NF¹⁸ provided 1,2,4-triols¹⁹ **16** and **17** possessing four contiguous stereocenters.

Functionalizations of ketone **8** with the two different nucleophiles (Scheme 5) involve addition to opposite faces, which was not anticipated. The selectivity of the addition of $LiAlH₄$ is consistent with the solid-state structure of the starting material. Analysis of the X-ray crystal structure of **8** reveals the steric congestion that blocks hydride addition syn to the propyl substituent (Figure 1). The butyl (at C2)

Figure 1. X-ray crystal structure of **8**.

and propyl (at C4) substituents lie nearly perpendicular to the carbonyl group (C3), blocking access to this face of the carbonyl through the Bürgi-Dunitz angle.²⁰ Approach to the other face is impeded by the *tert*-butyl substituents. Only small nucleophiles, such as a hydride, $2¹$ are able to approach over the *t*-Bu substituent. Because neither trajectory is favorable, nucleophiles with increased steric bulk (as compared to a hydride) are too hindered to add to either face of the carbonyl.²²

The reversal in selectivity of the Grignard reagent results from the different mechanism of its nucleophilic addition. The addition of allylmagnesium chloride to **8** does not proceed through standard nucleophilic attack on the carbonyl. Unlike other Grignard reagents, 22 allylmagnesium chloride

⁽¹⁷⁾ Attempts to prove the relative stereochemistry of **7e** by chemical derivatization and crystallization were unsuccessful, so the stereochemistry was assigned by close analogy. See: Bear, T. J.; Shaw, J. T.; Woerpel, K. A. *J. Org. Chem.* **²⁰⁰²**, *⁶⁷*, 2056-2064.

⁽¹⁸⁾ Direct deprotection of **8** with *n*-Bu4NF was unsuccessful due to a competitive retro-aldol reaction.

 (19) For additional examples of 1,2,4-triol formation utilizing siliconmasked precursors, see: (a) Murakami, M.; Suginome, M.; Fujimoto, K.; Nakamura, H.; Andersson, P. G.; Ito, Y. *J. Am. Chem. Soc.* **1993**, *115*, ⁶⁴⁸⁷-6498. (b) Murakami, M.; Oike, H.; Sugawara, M.; Suginome, M.; Ito, Y. *Tetrahedron* **¹⁹⁹³**, *⁴⁹*, 3933-3946.

⁽²⁰⁾ Bu¨rgi, H.-B. *Angew. Chem., Int. Ed. Engl.* **¹⁹⁷⁵**, *¹⁴*, 460-473.

⁽²¹⁾ Gung, B. W. *Chem. Re*V*.* **¹⁹⁹⁹**, *⁹⁹*, 1377-1386.

⁽²²⁾ Substrate **8** was unreactive with other Grignard reagents.

can react with carbonyl compounds via single-electron transfer $(SET)^{23,24}$ or through a six-membered ring transition state.25 In the case of ketone **8**, the six-membered transition state is unlikely due to the steric congestion of **8**. A mechanism involving SET would result in an oxygenstabilized radical with two possible conformers **A** and **B** (Figure 2).26 Addition of the allyl radical to conformer **A**

Figure 2. Formation of alcohol **15** by radical **A**.

was preferred due to decreased steric congestion of the required trajectory. The conformational change induced by SET allows addition by pseudoaxial attack to anomeric radical **A** by requiring an alternative trajectory (compared to ketone **8**) by which the allyl radical adds to the anomeric radical.

In summary, siloxyalkynes could be converted to 1,2,4 triols stereoselectively via silacyclopropenes and oxasilacyclopentenes through an aldol addition/rearrangement reaction. Oxasilacyclopentene acetal **7c** allowed access to substrates with various substitution patterns. Upon stereoselective allylation or reduction of the ketone, 1,2,4-triols **¹⁶** and **¹⁷** were obtained in five steps and 56-63% overall yield from siloxyalkyne **4a**.

Acknowledgment. This research was supported by the National Institute of General Medical Sciences of the National Institutes of Health (GM-54909). K.A.W. thanks Amgen, Johnson & Johnson, Eli Lilly and Company, and Merck Research Laboratories for awards to support research. We thank Dr. Phil Dennison (UCI) for assistance with NMR spectrometry, Dr. Joseph W. Ziller (UCI) for X-ray crystallographic data, and Dr. John Greaves (UCI) for mass spectrometry.

Supporting Information Available: Experimental procedures and spectroscopic, analytical, and X-ray data for the products (PDF, CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

OL061652G

⁽²³⁾ Gajewski, J. J.; Bocian, W.; Harris, N. J.; Olson, L. P.; Gajewski, J. P. *J. Am. Chem. Soc.* **¹⁹⁹⁹**, *¹²¹*, 326-334.

⁽²⁴⁾ Hoffmann, R. W. *Chem. Soc. Re*V*.* **²⁰⁰³**, *³²*, 225-230.

⁽²⁵⁾ Gajewski, J. J.; Bocian, W.; Brichford, N. L.; Henderson, J. L. *J. Org. Chem.* **²⁰⁰²**, *⁶⁷*, 4236-4240.

⁽²⁶⁾ Rychnovsky, S. D.; Powers, J. P.; Lepage, T. J. *J. Am. Chem. Soc.* **¹⁹⁹²**, *¹¹⁴*, 8375-8384.